Large-scale surveillance system: detection and tracking of suspicious motion patterns in crowded traffic scenes
نویسندگان
چکیده
The worldwide increasing sentiment of insecurity gave birth to a new era, shaking thereby the intelligent videosurveillance systems design and deployment. The large-scale use of these means has prompted the creation of new needs in terms of analysis and interpretation. For this purpose, behavior recognition and scene understanding related applications have become more captivating to a significant number of computer vision researchers, particularly when crowded scenes are concerned. So far, motion analysis and tracking remain challenging due to significant visual ambiguities, which encourage looking into further keys. By this work, we present a new framework to recognize various motion patterns, extract abnormal behaviors and track them over a multi-camera traffic surveillance system. We apply a density-based technique to cluster motion vectors produced by optical flow, and compare them with motion pattern models defined earlier. Non-identified clusters are treated as suspicious and simultaneously tracked over an overlapping camera network for as long as possible. To aiming the network configuration, we designed an active camera scheduling strategy where camera assignment was realized via an improved Weighted Round-Robin algorithm. To validate our approach, experiment results are presented and discussed.
منابع مشابه
Online multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملCamera Surveillance of Crowded Traffic Scenes
This paper deals with real-time image processing of crowded outdoor scenes with the objective of creating an effective traffic management system that monitors urban settings (urban intersections, streets after athletic events, etc.). The proposed system can detect, track, and monitor both pedestrians (crowds) and vehicles. We describe the characteristics of the tracker that is based on a new de...
متن کاملTracking Using Motion Patterns for Very Crowded Scenes
This paper proposes Motion Structure Tracker (MST) to solve the problem of tracking in very crowded structured scenes. It combines visual tracking, motion pattern learning and multi-target tracking. Tracking in crowded scenes is very challenging due to hundreds of similar objects, cluttered background, small object size, and occlusions. However, structured crowded scenes exhibit clear motion pa...
متن کاملRobust Real-Time Tracking for Visual Surveillance
This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve tracking of objects that are in close proximity. The four component modules described in this paper are (i) motion detection using a layered background model, (ii) object tracking based...
متن کامل